Cargando…
Convolutional neural networks for automatic image quality control and EARL compliance of PET images
BACKGROUND: Machine learning studies require a large number of images often obtained on different PET scanners. When merging these images, the use of harmonized images following EARL-standards is essential. However, when including retrospective images, EARL accreditation might not have been in place...
Autores principales: | Pfaehler, Elisabeth, Euba, Daniela, Rinscheid, Andreas, Hoekstra, Otto S., Zijlstra, Josee, van Sluis, Joyce, Brouwers, Adrienne H., Lapa, Constantin, Boellaard, Ronald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363539/ https://www.ncbi.nlm.nih.gov/pubmed/35943622 http://dx.doi.org/10.1186/s40658-022-00468-w |
Ejemplares similares
-
EARL compliance and imaging optimisation on the Biograph Vision Quadra PET/CT using phantom and clinical data
por: van Sluis, Joyce, et al.
Publicado: (2022) -
Quantitative implications of the updated EARL 2019 PET–CT performance standards
por: Kaalep, Andres, et al.
Publicado: (2019) -
PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability
por: Pfaehler, Elisabeth, et al.
Publicado: (2020) -
Digital PET compliance to EARL accreditation specifications
por: Koopman, Daniëlle, et al.
Publicado: (2017) -
Clinically feasible semi-automatic workflows for measuring metabolically active tumour volume in metastatic melanoma
por: van Sluis, Joyce, et al.
Publicado: (2020)