Cargando…
Deploying machine learning with messy, real world data in low- and middle-income countries: Developing a global health use case
The rapid emergence of machine learning in the form of large-scale computational statistics and accumulation of data offers global health implementing partners an opportunity to adopt, adapt, and apply these techniques and technologies to low- and middle-income country (LMIC) contexts where we work....
Autores principales: | Finnegan, Amy, Potenziani, David D., Karutu, Caroline, Wanyana, Irene, Matsiko, Nicholas, Elahi, Cyrus, Mijumbi, Nobert, Stanley, Richard, Vota, Wayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363768/ https://www.ncbi.nlm.nih.gov/pubmed/35968403 http://dx.doi.org/10.3389/fdata.2022.553673 |
Ejemplares similares
-
The Agile Deployment of Machine Learning Models in Healthcare
por: Jackson, Stuart, et al.
Publicado: (2019) -
Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River
por: Xiao, Lu, et al.
Publicado: (2022) -
Mapping urban socioeconomic inequalities in developing countries through Facebook advertising data
por: Piaggesi, Simone, et al.
Publicado: (2022) -
The role of functional data in interpreting the effects of genetic variation
por: Young, David L., et al.
Publicado: (2015) -
Challenges and Legal Gaps of Genetic Profiling in the Era of Big Data
por: Sariyar, Murat, et al.
Publicado: (2019)