Cargando…
COVID-19: respiratory disease diagnosis with regularized deep convolutional neural network using human respiratory sounds
Human respiratory sound auscultation (HRSA) parameters have been the real choice for detecting human respiratory diseases in the last few years. It is a challenging task to extract the respiratory sound features from the breath, voice, and cough sounds. The existing methods failed to extract the sou...
Autores principales: | Kranthi Kumar, Lella, Alphonse, P. J. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363874/ https://www.ncbi.nlm.nih.gov/pubmed/35966369 http://dx.doi.org/10.1140/epjs/s11734-022-00649-9 |
Ejemplares similares
-
Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath
por: Lella, Kranthi Kumar, et al.
Publicado: (2022) -
Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice
por: Lella, Kranthi Kumar, et al.
Publicado: (2021) -
COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds
por: Kranthi Kumar, Lella, et al.
Publicado: (2022) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Deep Neural Network-Based Respiratory Pathology Classification Using Cough Sounds
por: Balamurali, B T, et al.
Publicado: (2021)