Cargando…
EventHD: Robust and efficient hyperdimensional learning with neuromorphic sensor
Brain-inspired computing models have shown great potential to outperform today's deep learning solutions in terms of robustness and energy efficiency. Particularly, Hyper-Dimensional Computing (HDC) has shown promising results in enabling efficient and robust cognitive learning. In this study,...
Autores principales: | Zou, Zhuowen, Alimohamadi, Haleh, Kim, Yeseong, Najafi, M. Hassan, Srinivasa, Narayan, Imani, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363880/ https://www.ncbi.nlm.nih.gov/pubmed/35968370 http://dx.doi.org/10.3389/fnins.2022.858329 |
Ejemplares similares
-
Memory-inspired spiking hyperdimensional network for robust online learning
por: Zou, Zhuowen, et al.
Publicado: (2022) -
GrapHD: Graph-Based Hyperdimensional Memorization for Brain-Like Cognitive Learning
por: Poduval, Prathyush, et al.
Publicado: (2022) -
Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing
por: Kazemi, Arman, et al.
Publicado: (2022) -
High-throughput hyperdimensional vertebrate phenotyping
por: Pardo-Martin, Carlos, et al.
Publicado: (2013) -
Symbolic Representation and Learning With Hyperdimensional Computing
por: Mitrokhin, Anton, et al.
Publicado: (2020)