Cargando…

A study on quality control using delta data with machine learning technique

BACKGROUND: In the big data era, patient-based real-time quality control (PBRTQC), as an emerging quality control (QC) method, is expanding within the clinical laboratory industry. However, the main issue of current PBRTQC methodology is data stability. Our study is aimed to explore a novel protocol...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yufang, Wang, Zhe, Huang, Dawei, Wang, Wei, Feng, Xiang, Han, Zewen, Song, Biao, Wang, Qingtao, Zhou, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363967/
https://www.ncbi.nlm.nih.gov/pubmed/35965972
http://dx.doi.org/10.1016/j.heliyon.2022.e09935
Descripción
Sumario:BACKGROUND: In the big data era, patient-based real-time quality control (PBRTQC), as an emerging quality control (QC) method, is expanding within the clinical laboratory industry. However, the main issue of current PBRTQC methodology is data stability. Our study is aimed to explore a novel protocol for data stability by combining delta data with machine learning (ML) technique to improve the capacity of QC event detection. METHODS: A data set of 423,290 laboratory results from Beijing Chao-yang Hospital 2019 patient results were used as a training set (n = 380960, 90%) and internal validation set (n = 42330, 10%). A further 22,460 results from Beijing Long-fu Hospital 2019 patient results were used as a test set. Three-type data (1) Single-type data processed by truncation limits; (2) delta-type data processed by truncation limits and (3)delta-type data processed by Isolated Forest (IF) algorithm were evaluated with accuracy, sensitivity, NPed, etc., and compared with previously published statistical methods. RESULTS: The optimal model was based on Random Forest (RF) algorithm by using delta-type data processed by IF algorithm. The model had a better accuracy (0.99), sensitivity (0.99) specificity (0.99) and AUC (0.99) with the dependent test set, surpassing the critical bias of PBRTQC by over 50%. For the LYMPH#, HGB, and PLT, the cumulative MNPed of MLQC were reduced by 95.43%, 97.39%, and 97.97% respectively when compared to the best of the PBRTQC. CONCLUSION: Final results indicate that by integrating an innovative ML algorithm with the overall data processing protocol the detection of QC events is improved.