Cargando…
Identification of anti-schistosomal, anthelmintic and anti-parasitic compounds curated and text-mined from the scientific literature
More than a billion people are infected with parasitic worms, including nematodes, such as hookworms, and flatworms, such as blood flukes. Few drugs are available to treat worm infections, but high-throughput screening approaches hold promise to identify novel drug candidates. One problem for resear...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363976/ https://www.ncbi.nlm.nih.gov/pubmed/36003342 http://dx.doi.org/10.12688/wellcomeopenres.17987.1 |
Sumario: | More than a billion people are infected with parasitic worms, including nematodes, such as hookworms, and flatworms, such as blood flukes. Few drugs are available to treat worm infections, but high-throughput screening approaches hold promise to identify novel drug candidates. One problem for researchers who find an interesting ‘hit’ from a high-throughput screen is to identify whether that compound, or a similar compound has previously been published as having anthelmintic or anti-parasitic activity. Here, we present (i) data sets of 2,828 anthelmintic compounds, and 1,269 specific anti-schistosomal compounds, manually curated from scientific papers and books, and (ii) a data set of 24,335 potential anthelmintic and anti-parasitic compounds identified by text-mining PubMed abstracts. We provide their structures in simplified molecular-input line-entry system (SMILES) format so that researchers can easily compare ‘hits’ from their screens to these anthelmintic compounds and anti-parasitic compounds and find previous literature on them to support/halt their progression in drug discovery pipelines. |
---|