Cargando…

Synergistic effect of nanostructure and calcium ions on improving the bioactivity of titanium implants

Surface structure and composition play essential roles in the osseointegration of titanium implants. In the present study, a nanoscale surface structure incorporated with calcium ions was fabricated on a titanium surface by hydrothermal treatment. The characteristics of the surfaces were analysed, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yue, Wang, Jingwen, Hosseinijenab, Shahrzad, Yu, Yiqiang, Lv, Chao, Luo, Cheng, Zhang, Weijie, Sun, Xi, Zhang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364004/
https://www.ncbi.nlm.nih.gov/pubmed/35958094
http://dx.doi.org/10.1098/rsos.220206
Descripción
Sumario:Surface structure and composition play essential roles in the osseointegration of titanium implants. In the present study, a nanoscale surface structure incorporated with calcium ions was fabricated on a titanium surface by hydrothermal treatment. The characteristics of the surfaces were analysed, and the bioactivity of the samples was evaluated in vitro and in vivo. nm-Ti and nm/Ca-Ti surfaces were significantly more hydrophilic than control-Ti surfaces. nm/Ca-Ti samples showed much faster bone-like apatite precipitation in simulated body fluid than the other samples. The results of MC3T3-E1 cell tests demonstrated that both nm-Ti and nm/Ca-Ti surfaces accelerated cell adhesion and proliferation. The highest level of osteogenesis-related genes (Runx2, bone morphogenetic protein-2, osteopontin and osteocalcin) were observed in nm/Ca-Ti samples, followed by nm-Ti samples. Alizarin red staining experiment showed that the amount of extracellular matrix mineralized nodules in nm/Ca-Ti group was significantly higher than others. In animal experiments using SD rats, nm/Ca-Ti showed the highest value of new bone formation at two and four weeks. The present study suggested that the nanostructure and calcium ions showed synergetic effects on accelerating bone-like apatite precipitation and osteoblast cell growth and differentiation. Animal experiment further indicated that such surface could promote early osteogenesis.