Cargando…

Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent

OBJECTIVE: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. MATERIAL & METHODS: In this retrospective IRB-approved study, imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Mammadov, Orkhan, Akkurt, Burak Han, Musigmann, Manfred, Ari, Asena Petek, Blömer, David A., Kasap, Dilek N.G., Henssen, Dylan J.H.A., Nacul, Nabila Gala, Sartoretti, Elisabeth, Sartoretti, Thomas, Backhaus, Philipp, Thomas, Christian, Stummer, Walter, Heindel, Walter, Mannil, Manoj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364026/
https://www.ncbi.nlm.nih.gov/pubmed/35965975
http://dx.doi.org/10.1016/j.heliyon.2022.e10023
_version_ 1784765064035696640
author Mammadov, Orkhan
Akkurt, Burak Han
Musigmann, Manfred
Ari, Asena Petek
Blömer, David A.
Kasap, Dilek N.G.
Henssen, Dylan J.H.A.
Nacul, Nabila Gala
Sartoretti, Elisabeth
Sartoretti, Thomas
Backhaus, Philipp
Thomas, Christian
Stummer, Walter
Heindel, Walter
Mannil, Manoj
author_facet Mammadov, Orkhan
Akkurt, Burak Han
Musigmann, Manfred
Ari, Asena Petek
Blömer, David A.
Kasap, Dilek N.G.
Henssen, Dylan J.H.A.
Nacul, Nabila Gala
Sartoretti, Elisabeth
Sartoretti, Thomas
Backhaus, Philipp
Thomas, Christian
Stummer, Walter
Heindel, Walter
Mannil, Manoj
author_sort Mammadov, Orkhan
collection PubMed
description OBJECTIVE: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. MATERIAL & METHODS: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). RESULTS: Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833]. CONCLUSION: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value.
format Online
Article
Text
id pubmed-9364026
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-93640262022-08-11 Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent Mammadov, Orkhan Akkurt, Burak Han Musigmann, Manfred Ari, Asena Petek Blömer, David A. Kasap, Dilek N.G. Henssen, Dylan J.H.A. Nacul, Nabila Gala Sartoretti, Elisabeth Sartoretti, Thomas Backhaus, Philipp Thomas, Christian Stummer, Walter Heindel, Walter Mannil, Manoj Heliyon Research Article OBJECTIVE: Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images. MATERIAL & METHODS: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). RESULTS: Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833]. CONCLUSION: Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value. Elsevier 2022-08-02 /pmc/articles/PMC9364026/ /pubmed/35965975 http://dx.doi.org/10.1016/j.heliyon.2022.e10023 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Mammadov, Orkhan
Akkurt, Burak Han
Musigmann, Manfred
Ari, Asena Petek
Blömer, David A.
Kasap, Dilek N.G.
Henssen, Dylan J.H.A.
Nacul, Nabila Gala
Sartoretti, Elisabeth
Sartoretti, Thomas
Backhaus, Philipp
Thomas, Christian
Stummer, Walter
Heindel, Walter
Mannil, Manoj
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_full Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_fullStr Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_full_unstemmed Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_short Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
title_sort radiomics for pseudoprogression prediction in high grade gliomas: added value of mr contrast agent
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364026/
https://www.ncbi.nlm.nih.gov/pubmed/35965975
http://dx.doi.org/10.1016/j.heliyon.2022.e10023
work_keys_str_mv AT mammadovorkhan radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT akkurtburakhan radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT musigmannmanfred radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT ariasenapetek radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT blomerdavida radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT kasapdilekng radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT henssendylanjha radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT naculnabilagala radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT sartorettielisabeth radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT sartorettithomas radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT backhausphilipp radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT thomaschristian radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT stummerwalter radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT heindelwalter radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent
AT mannilmanoj radiomicsforpseudoprogressionpredictioninhighgradegliomasaddedvalueofmrcontrastagent