Cargando…

SPS1 deficiency-triggered PGRP-LC and Toll expression controls innate immunity in Drosophila S2 cells

Selenophosphate synthetase 1 (SPS1) is an essential gene for the cell growth and embryogenesis in Drosophila melanogaster. We have previously reported that SPS1 deficiency stimulates the expression of genes responsible for the innate immune system, including antimicrobial peptides (AMPs), in Drosoph...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Tack-Jin, Sup Shim, Myoung, Bang, Jeyoung, Kim, Jin-Hong, Jae Lee, Byeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364239/
https://www.ncbi.nlm.nih.gov/pubmed/35723425
http://dx.doi.org/10.1242/bio.059295
Descripción
Sumario:Selenophosphate synthetase 1 (SPS1) is an essential gene for the cell growth and embryogenesis in Drosophila melanogaster. We have previously reported that SPS1 deficiency stimulates the expression of genes responsible for the innate immune system, including antimicrobial peptides (AMPs), in Drosophila S2 cells. However, the underlying mechanism has not been elucidated. Here, we investigated the immune pathways that control the SPS1-deficiency-induced expression of AMPs in S2 cells. It was found that the activation of AMP expression is regulated by both immune deficiency (IMD) and the Toll pathway. Double knockdown of the upstream genes of each pathway with SPS1 showed that the peptidoglycan recognition protein-LC (PGRP-LC) and Toll genes are targeted by SPS1 for regulating these pathways. We also found that the IMD and Toll pathway regulate AMP expression by cross-talking. The levels of PGRP-LC and Toll mRNAs were upregulated upon Sps1 knockdown (6.4±0.36 and 3.2±0.45-fold, respectively, n=3). Overexpression of each protein also upregulated AMPs. Interestingly, PGRP-LC overexpression upregulated AMP more than Toll overexpression. These data strongly suggest that SPS1 controls the innate immune system of D. melanogaster through regulating PGRP-LC and Toll expression.