Cargando…
Adapting recurrent neural networks for classifying public discourse on COVID-19 symptoms in Twitter content
The COVID-19 infection, which began in December 2019, has claimed many lives and impacted all aspects of human life. With time, COVID-19 was identified as a pandemic outbreak by the World Health Organization (WHO), putting massive pressure on global health. During this ongoing pandemic, the exponent...
Autores principales: | Amin, Samina, Alharbi, Abdullah, Uddin, M. Irfan, Alyami, Hashem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364288/ https://www.ncbi.nlm.nih.gov/pubmed/35966348 http://dx.doi.org/10.1007/s00500-022-07405-0 |
Ejemplares similares
-
Characterizing Precision Nutrition Discourse on Twitter: Quantitative Content Analysis
por: Batheja, Sapna, et al.
Publicado: (2023) -
Twitter Misinformation Discourses About Vaping: Systematic Content Analysis
por: Al-Rawi, Ahmed, et al.
Publicado: (2023) -
Public Discourse Against Masks in the COVID-19 Era: Infodemiology Study of Twitter Data
por: Al-Ramahi, Mohammad, et al.
Publicado: (2021) -
Public discourse and debate about vaccines in the midst of the covid-19 pandemic: A qualitative content analysis of Twitter
por: Prada, Enrique, et al.
Publicado: (2023) -
Leading Topics in Twitter Discourse on JUUL and Puff Bar Products: Content Analysis
por: Allem, Jon-Patrick, et al.
Publicado: (2021)