Cargando…
Improving candidate Biosynthetic Gene Clusters in fungi through reinforcement learning
MOTIVATION: Precise identification of Biosynthetic Gene Clusters (BGCs) is a challenging task. Performance of BGC discovery tools is limited by their capacity to accurately predict components belonging to candidate BGCs, often overestimating cluster boundaries. To support optimizing the composition...
Autores principales: | Almeida, Hayda, Tsang, Adrian, Diallo, Abdoulaye Baniré |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364373/ https://www.ncbi.nlm.nih.gov/pubmed/35762945 http://dx.doi.org/10.1093/bioinformatics/btac420 |
Ejemplares similares
-
TOUCAN: a framework for fungal biosynthetic gene cluster discovery
por: Almeida, Hayda, et al.
Publicado: (2020) -
Classification of bioinformatics workflows using weighted versions of partitioning and hierarchical clustering algorithms
por: Lord, Etienne, et al.
Publicado: (2015) -
Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi
por: Mózsik, László, et al.
Publicado: (2022) -
The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi
por: Balamurugan, Charu, et al.
Publicado: (2023) -
Phylogenetic Comparison of Swainsonine Biosynthetic Gene Clusters among Fungi
por: Neyaz, Marwa, et al.
Publicado: (2022)