Cargando…
Deep learning models for RNA secondary structure prediction (probably) do not generalize across families
MOTIVATION: The secondary structure of RNA is of importance to its function. Over the last few years, several papers attempted to use machine learning to improve de novo RNA secondary structure prediction. Many of these papers report impressive results for intra-family predictions but seldom address...
Autores principales: | Szikszai, Marcell, Wise, Michael, Datta, Amitava, Ward, Max, Mathews, David H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364374/ https://www.ncbi.nlm.nih.gov/pubmed/35748706 http://dx.doi.org/10.1093/bioinformatics/btac415 |
Ejemplares similares
-
Advanced multi-loop algorithms for RNA secondary structure prediction reveal that the simplest model is best
por: Ward, Max, et al.
Publicado: (2017) -
Predicting pseudoknotted structures across two RNA sequences
por: Sperschneider, Jana, et al.
Publicado: (2012) -
DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model
por: Sperschneider, Jana, et al.
Publicado: (2010) -
Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures
por: Sloma, Michael F., et al.
Publicado: (2016) -
Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy
por: van Rooij, Ward, et al.
Publicado: (2021)