Cargando…
On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery
In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is inco...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364860/ http://dx.doi.org/10.1007/s44196-022-00114-4 |
Sumario: | In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay's model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay's model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon’s test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO. |
---|