Cargando…
Intelligent automatic sleep staging model based on CNN and LSTM
Since electroencephalogram (EEG) is a significant basis to treat and diagnose somnipathy, sleep electroencephalogram automatic staging methods play important role in the treatment and diagnosis of sleep disorders. Due to the characteristics of weak signals, EEG needs accurate and efficient algorithm...
Autores principales: | Zhuang, Lan, Dai, Minhui, Zhou, Yi, Sun, Lingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364961/ https://www.ncbi.nlm.nih.gov/pubmed/35968483 http://dx.doi.org/10.3389/fpubh.2022.946833 |
Ejemplares similares
-
The accuracy of intraocular lens power calculation formulas based on artificial intelligence in highly myopic eyes: a systematic review and network meta-analysis
por: Zhou, Yi, et al.
Publicado: (2023) -
Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model
por: Zhang, Junming, et al.
Publicado: (2021) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Shoeibi, Afshin, et al.
Publicado: (2021) -
Automatic Detection of Atrial Fibrillation Based on CNN-LSTM and Shortcut Connection
por: Ping, Yongjie, et al.
Publicado: (2020) -
COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization
por: Hamza, Ameer, et al.
Publicado: (2022)