Cargando…

Electronic landscape of the f-electron intermetallics with the ThCr(2)Si(2) structure

Although strongly correlated f-electron systems are well known as reservoirs for quantum phenomena, a persistent challenge is to design specific states. What is often missing are simple ways to determine whether a given compound can be expected to exhibit certain behaviors and what tuning vector(s)...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, You, Chan, Julia Y., Baumbach, Ryan E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365280/
https://www.ncbi.nlm.nih.gov/pubmed/35947661
http://dx.doi.org/10.1126/sciadv.abp8264
Descripción
Sumario:Although strongly correlated f-electron systems are well known as reservoirs for quantum phenomena, a persistent challenge is to design specific states. What is often missing are simple ways to determine whether a given compound can be expected to exhibit certain behaviors and what tuning vector(s) would be useful to select the ground state. In this review, we address this question by aggregating information about Ce, Eu, Yb, and U compounds with the ThCr(2)Si(2) structure. We construct electronic/magnetic state maps that are parameterized in terms of unit cell volumes and d-shell filling, which reveals useful trends including that (i) the magnetic and nonmagnetic examples are well separated, and (ii) the crossover regions harbor the examples with exotic states. These insights are used to propose structural/chemical regions of interest in these and related materials, with the goal of accelerating discovery of the next generation of f-electron quantum materials.