Cargando…
E-values for effect heterogeneity and approximations for causal interaction
BACKGROUND: Estimates of effect heterogeneity (i.e. the extent to which the causal effect of one exposure varies across strata of a second exposure) can be biased if the exposure–outcome relationship is subject to uncontrolled confounding whose severity differs across strata of the second exposure....
Autores principales: | Mathur, Maya B, Smith, Louisa H, Yoshida, Kazuki, Ding, Peng, VanderWeele, Tyler J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365630/ https://www.ncbi.nlm.nih.gov/pubmed/35460421 http://dx.doi.org/10.1093/ije/dyac073 |
Ejemplares similares
-
The Interaction Continuum
por: VanderWeele, Tyler J.
Publicado: (2019) -
Bounding Bias Due to Selection
por: Smith, Louisa H., et al.
Publicado: (2019) -
Commentary: Developing best-practice guidelines for the reporting of E-values
por: VanderWeele, Tyler J, et al.
Publicado: (2020) -
Sensitivity Analysis Without Assumptions
por: Ding, Peng, et al.
Publicado: (2016) -
A proposed clinical and biological interpretation of mediated interaction
por: Ikram, M. Arfan, et al.
Publicado: (2015)