Cargando…
GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms
Artificial Intelligence aids early diagnosis and development of new treatments, which is key to slow down the progress of the diseases, which to date have no cure. The patients’ evaluation is carried out through diagnostic techniques such as clinical assessments neuroimaging techniques, which provid...
Autores principales: | García-Gutierrez, Fernando, Díaz-Álvarez, Josefa, Matias-Guiu, Jordi A., Pytel, Vanesa, Matías-Guiu, Jorge, Cabrera-Martín, María Nieves, Ayala, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365756/ https://www.ncbi.nlm.nih.gov/pubmed/35852735 http://dx.doi.org/10.1007/s11517-022-02630-z |
Ejemplares similares
-
Genetic Algorithms for Optimized Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Fluorodeoxyglucose Positron Emission Tomography Imaging
por: Díaz-Álvarez, Josefa, et al.
Publicado: (2022) -
Neural basis of visuospatial tests in behavioral variant frontotemporal dementia
por: Delgado-Álvarez, Alfonso, et al.
Publicado: (2022) -
Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain
por: Montero-Escribano, Paloma, et al.
Publicado: (2020) -
Clustering Analysis of FDG-PET Imaging in Primary Progressive Aphasia
por: Matias-Guiu, Jordi A., et al.
Publicado: (2018) -
An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders
por: Álvarez, Josefa Díaz, et al.
Publicado: (2019)