Cargando…
Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites
This article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of st...
Autores principales: | Ejaz, Faizan, Hwang, Leslie K., Son, Jangyup, Kim, Jin-Sang, Lee, Dong Su, Kwon, Beomjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365832/ https://www.ncbi.nlm.nih.gov/pubmed/35948586 http://dx.doi.org/10.1038/s41598-022-16867-z |
Ejemplares similares
-
Effects of Thermal Activation on CNT Nanocomposite Electrical Conductivity and Rheology
por: Hubbard, Joel, et al.
Publicado: (2022) -
Improving Thermal Conductivity and Tribological Performance of Polyimide by Filling Cu, CNT, and Graphene
por: Liu, Chen, et al.
Publicado: (2023) -
Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite
por: Ata, Seisuke, et al.
Publicado: (2014) -
Effect of Carbon Nanotubes on the Mechanical, Crystallization, Electrical and Thermal Conductivity Properties of CNT/CCF/PEKK Composites
por: Yan, Xu, et al.
Publicado: (2022) -
Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations
por: Minakov, Alexander A., et al.
Publicado: (2019)