Cargando…

Validation of droplet digital PCR for cytokeratin 19 mRNA detection in canine peripheral blood and mammary gland

In humans, peripheral blood cytokeratin 19 (CK19) mRNA-positive circulating tumor cells (CTCs) was utilized to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. To our kno...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanvetthayanont, Potsawat, Yata, Teerapong, Boonnil, Jiranun, Temisak, Sasithon, Ponglowhapan, Suppawiwat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365843/
https://www.ncbi.nlm.nih.gov/pubmed/35948591
http://dx.doi.org/10.1038/s41598-022-17493-5
Descripción
Sumario:In humans, peripheral blood cytokeratin 19 (CK19) mRNA-positive circulating tumor cells (CTCs) was utilized to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. To our knowledge, there has been little research regarding CK19 in canine mammary tumors (CMTs) using molecular methods. A droplet digital PCR (ddPCR) is proposed as a precise and sensitive quantification of nucleic acid targets. Hence, this study aimed to validate a newly designed assay for CK19 detection in canine blood and mammary tissue, along with the reference gene HPRT, by ddPCR. All primers and probes showed a precise match with the exon region of target genes. The assay exhibited PCR efficacy of 90.4% and 91.0% for CK19 and HPRT amplifications with linearity, respectively. The annealing temperature (T(a)) for duplex ddPCR was 55 °C, providing the highest concentrations of both genes tested by the synthetic plasmid DNA. The limit of detection (LOD) of CK19 and HPRT were 2.16 ± 1.27 and 2.44 ± 1.31 copies/µL, respectively. Finally, the ddPCR assay was validated with canine peripheral blood, non-neoplastic mammary tissues and spiked samples. Our findings provide a new platform for CK19 studies in CMT diagnosis through blood and mammary tissues.