Cargando…
Spatial relation learning in complementary scenarios with deep neural networks
A cognitive agent performing in the real world needs to learn relevant concepts about its environment (e.g., objects, color, and shapes) and react accordingly. In addition to learning the concepts, it needs to learn relations between the concepts, in particular spatial relations between objects. In...
Autores principales: | Lee, Jae Hee, Yao, Yuan, Özdemir, Ozan, Li, Mengdi, Weber, Cornelius, Liu, Zhiyuan, Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366005/ https://www.ncbi.nlm.nih.gov/pubmed/35966371 http://dx.doi.org/10.3389/fnbot.2022.844753 |
Ejemplares similares
-
Self-organizing neural integration of pose-motion features for human action recognition
por: Parisi, German I., et al.
Publicado: (2015) -
Learning indoor robot navigation using visual and sensorimotor map information
por: Yan, Wenjie, et al.
Publicado: (2013) -
Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization
por: Parisi, German I., et al.
Publicado: (2018) -
Crossmodal Language Grounding in an Embodied Neurocognitive Model
por: Heinrich, Stefan, et al.
Publicado: (2020) -
Bootstrapping Knowledge Graphs From Images and Text
por: Mao, Jiayuan, et al.
Publicado: (2019)