Cargando…
Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress
Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, dro...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366039/ https://www.ncbi.nlm.nih.gov/pubmed/35968110 http://dx.doi.org/10.3389/fpls.2022.936696 |
_version_ | 1784765469112139776 |
---|---|
author | Chen, Weiqi Miao, Yilin Ayyaz, Ahsan Hannan, Fakhir Huang, Qian Ulhassan, Zaid Zhou, Yingying Islam, Faisal Hong, Zheyuan Farooq, Muhammad Ahsan Zhou, Weijun |
author_facet | Chen, Weiqi Miao, Yilin Ayyaz, Ahsan Hannan, Fakhir Huang, Qian Ulhassan, Zaid Zhou, Yingying Islam, Faisal Hong, Zheyuan Farooq, Muhammad Ahsan Zhou, Weijun |
author_sort | Chen, Weiqi |
collection | PubMed |
description | Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes. |
format | Online Article Text |
id | pubmed-9366039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93660392022-08-12 Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress Chen, Weiqi Miao, Yilin Ayyaz, Ahsan Hannan, Fakhir Huang, Qian Ulhassan, Zaid Zhou, Yingying Islam, Faisal Hong, Zheyuan Farooq, Muhammad Ahsan Zhou, Weijun Front Plant Sci Plant Science Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes. Frontiers Media S.A. 2022-07-28 /pmc/articles/PMC9366039/ /pubmed/35968110 http://dx.doi.org/10.3389/fpls.2022.936696 Text en Copyright © 2022 Chen, Miao, Ayyaz, Hannan, Huang, Ulhassan, Zhou, Islam, Hong, Farooq and Zhou. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chen, Weiqi Miao, Yilin Ayyaz, Ahsan Hannan, Fakhir Huang, Qian Ulhassan, Zaid Zhou, Yingying Islam, Faisal Hong, Zheyuan Farooq, Muhammad Ahsan Zhou, Weijun Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title | Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title_full | Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title_fullStr | Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title_full_unstemmed | Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title_short | Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
title_sort | purple stem brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366039/ https://www.ncbi.nlm.nih.gov/pubmed/35968110 http://dx.doi.org/10.3389/fpls.2022.936696 |
work_keys_str_mv | AT chenweiqi purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT miaoyilin purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT ayyazahsan purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT hannanfakhir purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT huangqian purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT ulhassanzaid purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT zhouyingying purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT islamfaisal purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT hongzheyuan purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT farooqmuhammadahsan purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress AT zhouweijun purplestembrassicanapusexhibitshigherphotosyntheticefficiencyantioxidantpotentialandanthocyaninbiosynthesisrelatedgenesexpressionagainstdroughtstress |