Cargando…
Predicting the rupture status of small middle cerebral artery aneurysms using random forest modeling
OBJECTIVE: Small intracranial aneurysms are increasingly being detected; however, a prediction model for their rupture is rare. Random forest modeling was used to predict the rupture status of small middle cerebral artery (MCA) aneurysms with morphological features. METHODS: From January 2009 to Jun...
Autores principales: | Zhou, Jiafeng, Xia, Nengzhi, Li, Qiong, Zheng, Kuikui, Jia, Xiufen, Wang, Hao, Zhao, Bing, Liu, Jinjin, Yang, Yunjun, Chen, Yongchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366079/ https://www.ncbi.nlm.nih.gov/pubmed/35968311 http://dx.doi.org/10.3389/fneur.2022.921404 |
Ejemplares similares
-
Machine learning prediction model for the rupture status of middle cerebral artery aneurysm in patients with hypertension: a Chinese multicenter study
por: Lin, Mengqi, et al.
Publicado: (2023) -
Prediction of Clinical Outcome at Discharge After Rupture of Anterior Communicating Artery Aneurysm Using the Random Forest Technique
por: Xia, Nengzhi, et al.
Publicado: (2020) -
Classifying Ruptured Middle Cerebral Artery Aneurysms With a Machine Learning Based, Radiomics-Morphological Model: A Multicentral Study
por: Zhu, Dongqin, et al.
Publicado: (2021) -
Rupture Risk Assessment for Anterior Communicating Artery Aneurysms Using Decision Tree Modeling
por: Liu, Jinjin, et al.
Publicado: (2022) -
Endovascular treatment of middle cerebral artery aneurysms: current status and future prospects
por: Zhou, Zibo, et al.
Publicado: (2023)