Cargando…
AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images
PURPOSE: Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of...
Autores principales: | Zhang, Qian, Sampani, Konstantina, Xu, Mengjia, Cai, Shengze, Deng, Yixiang, Li, He, Sun, Jennifer K., Karniadakis, George Em |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366726/ https://www.ncbi.nlm.nih.gov/pubmed/35938881 http://dx.doi.org/10.1167/tvst.11.8.7 |
Ejemplares similares
-
Computational investigation of blood cell transport in retinal microaneurysms
por: Li, He, et al.
Publicado: (2022) -
Predictive modelling of thrombus formation in diabetic retinal microaneurysms
por: Li, He, et al.
Publicado: (2020) -
Automatic Identification and Segmentation of Orbital Blowout Fractures Based on Artificial Intelligence
por: Bao, Xiao-li, et al.
Publicado: (2023) -
BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease
por: Hilbert, Adam, et al.
Publicado: (2020) -
Fully Automated Segmentation of Human Eyeball Using Three-Dimensional U-Net in T2 Magnetic Resonance Imaging
por: Yang, Jin-Ju, et al.
Publicado: (2023)