Cargando…

Compositional cubes: a new concept for multi-factorial compositions

Compositional data are commonly known as multivariate observations carrying relative information. Even though the case of vector or even two-factorial compositional data (compositional tables) is already well described in the literature, there is still a need for a comprehensive approach to the anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Fačevicová, Kamila, Filzmoser, Peter, Hron, Karel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366844/
https://www.ncbi.nlm.nih.gov/pubmed/35971537
http://dx.doi.org/10.1007/s00362-022-01350-8
Descripción
Sumario:Compositional data are commonly known as multivariate observations carrying relative information. Even though the case of vector or even two-factorial compositional data (compositional tables) is already well described in the literature, there is still a need for a comprehensive approach to the analysis of multi-factorial relative-valued data. Therefore, this contribution builds around the current knowledge about compositional data a general theoretical framework for k-factorial compositional data. As a main finding it turns out that, similar to the case of compositional tables, also the multi-factorial structures can be orthogonally decomposed into an independent and several interactive parts and, moreover, a coordinate representation allowing for their separate analysis by standard analytical methods can be constructed. For the sake of simplicity, these features are explained in detail for the case of three-factorial compositions (compositional cubes), followed by an outline covering the general case. The three-dimensional structure is analyzed in depth in two practical examples, dealing with systems of spatial and time dependent compositional cubes. The methodology is implemented in the R package robCompositions.