Cargando…

Replacing bar graphs of continuous data with more informative graphics: are we making progress?

Recent work has raised awareness about the need to replace bar graphs of continuous data with informative graphs showing the data distribution. The impact of these efforts is not known. The present observational meta-research study examined how often scientists in different fields use various graph...

Descripción completa

Detalles Bibliográficos
Autores principales: Riedel, Nico, Schulz, Robert, Kazezian, Vartan, Weissgerber, Tracey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366861/
https://www.ncbi.nlm.nih.gov/pubmed/35822444
http://dx.doi.org/10.1042/CS20220287
_version_ 1784765662873255936
author Riedel, Nico
Schulz, Robert
Kazezian, Vartan
Weissgerber, Tracey
author_facet Riedel, Nico
Schulz, Robert
Kazezian, Vartan
Weissgerber, Tracey
author_sort Riedel, Nico
collection PubMed
description Recent work has raised awareness about the need to replace bar graphs of continuous data with informative graphs showing the data distribution. The impact of these efforts is not known. The present observational meta-research study examined how often scientists in different fields use various graph types, and assessed whether visualization practices have changed between 2010 and 2020. We developed and validated an automated screening tool, designed to identify bar graphs of counts or proportions, bar graphs of continuous data, bar graphs with dot plots, dot plots, box plots, violin plots, histograms, pie charts, and flow charts. Papers from 23 fields (approximately 1000 papers/field per year) were randomly selected from PubMed Central and screened (n=227998). F1 scores for different graphs ranged between 0.83 and 0.95 in the internal validation set. While the tool also performed well in external validation sets, F1 scores were lower for uncommon graphs. Bar graphs are more often used incorrectly to display continuous data than they are used correctly to display counts or proportions. The proportion of papers that use bar graphs of continuous data varies markedly across fields (range in 2020: 4–58%), with high rates in biochemistry and cell biology, complementary and alternative medicine, physiology, genetics, oncology and carcinogenesis, pharmacology, microbiology and immunology. Visualization practices have improved in some fields in recent years. Fewer than 25% of papers use flow charts, which provide information about attrition and the risk of bias. The present study highlights the need for continued interventions to improve visualization and identifies fields that would benefit most.
format Online
Article
Text
id pubmed-9366861
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-93668612022-08-18 Replacing bar graphs of continuous data with more informative graphics: are we making progress? Riedel, Nico Schulz, Robert Kazezian, Vartan Weissgerber, Tracey Clin Sci (Lond) Translational Science Recent work has raised awareness about the need to replace bar graphs of continuous data with informative graphs showing the data distribution. The impact of these efforts is not known. The present observational meta-research study examined how often scientists in different fields use various graph types, and assessed whether visualization practices have changed between 2010 and 2020. We developed and validated an automated screening tool, designed to identify bar graphs of counts or proportions, bar graphs of continuous data, bar graphs with dot plots, dot plots, box plots, violin plots, histograms, pie charts, and flow charts. Papers from 23 fields (approximately 1000 papers/field per year) were randomly selected from PubMed Central and screened (n=227998). F1 scores for different graphs ranged between 0.83 and 0.95 in the internal validation set. While the tool also performed well in external validation sets, F1 scores were lower for uncommon graphs. Bar graphs are more often used incorrectly to display continuous data than they are used correctly to display counts or proportions. The proportion of papers that use bar graphs of continuous data varies markedly across fields (range in 2020: 4–58%), with high rates in biochemistry and cell biology, complementary and alternative medicine, physiology, genetics, oncology and carcinogenesis, pharmacology, microbiology and immunology. Visualization practices have improved in some fields in recent years. Fewer than 25% of papers use flow charts, which provide information about attrition and the risk of bias. The present study highlights the need for continued interventions to improve visualization and identifies fields that would benefit most. Portland Press Ltd. 2022-08 2022-08-10 /pmc/articles/PMC9366861/ /pubmed/35822444 http://dx.doi.org/10.1042/CS20220287 Text en © 2022 The Author(s). https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Translational Science
Riedel, Nico
Schulz, Robert
Kazezian, Vartan
Weissgerber, Tracey
Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title_full Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title_fullStr Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title_full_unstemmed Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title_short Replacing bar graphs of continuous data with more informative graphics: are we making progress?
title_sort replacing bar graphs of continuous data with more informative graphics: are we making progress?
topic Translational Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366861/
https://www.ncbi.nlm.nih.gov/pubmed/35822444
http://dx.doi.org/10.1042/CS20220287
work_keys_str_mv AT riedelnico replacingbargraphsofcontinuousdatawithmoreinformativegraphicsarewemakingprogress
AT schulzrobert replacingbargraphsofcontinuousdatawithmoreinformativegraphicsarewemakingprogress
AT kazezianvartan replacingbargraphsofcontinuousdatawithmoreinformativegraphicsarewemakingprogress
AT weissgerbertracey replacingbargraphsofcontinuousdatawithmoreinformativegraphicsarewemakingprogress