Cargando…
Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
[Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised lear...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367000/ https://www.ncbi.nlm.nih.gov/pubmed/35966284 http://dx.doi.org/10.1021/acs.chemmater.1c02439 |
_version_ | 1784765692248064000 |
---|---|
author | Nicholas, Thomas C. Alexandrov, Eugeny V. Blatov, Vladislav A. Shevchenko, Alexander P. Proserpio, Davide M. Goodwin, Andrew L. Deringer, Volker L. |
author_facet | Nicholas, Thomas C. Alexandrov, Eugeny V. Blatov, Vladislav A. Shevchenko, Alexander P. Proserpio, Davide M. Goodwin, Andrew L. Deringer, Volker L. |
author_sort | Nicholas, Thomas C. |
collection | PubMed |
description | [Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised learning”) schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies. |
format | Online Article Text |
id | pubmed-9367000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93670002022-08-12 Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks Nicholas, Thomas C. Alexandrov, Eugeny V. Blatov, Vladislav A. Shevchenko, Alexander P. Proserpio, Davide M. Goodwin, Andrew L. Deringer, Volker L. Chem Mater [Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised learning”) schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies. American Chemical Society 2021-10-27 2021-11-09 /pmc/articles/PMC9367000/ /pubmed/35966284 http://dx.doi.org/10.1021/acs.chemmater.1c02439 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Nicholas, Thomas C. Alexandrov, Eugeny V. Blatov, Vladislav A. Shevchenko, Alexander P. Proserpio, Davide M. Goodwin, Andrew L. Deringer, Volker L. Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks |
title | Visualization and Quantification of Geometric Diversity
in Metal–Organic Frameworks |
title_full | Visualization and Quantification of Geometric Diversity
in Metal–Organic Frameworks |
title_fullStr | Visualization and Quantification of Geometric Diversity
in Metal–Organic Frameworks |
title_full_unstemmed | Visualization and Quantification of Geometric Diversity
in Metal–Organic Frameworks |
title_short | Visualization and Quantification of Geometric Diversity
in Metal–Organic Frameworks |
title_sort | visualization and quantification of geometric diversity
in metal–organic frameworks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367000/ https://www.ncbi.nlm.nih.gov/pubmed/35966284 http://dx.doi.org/10.1021/acs.chemmater.1c02439 |
work_keys_str_mv | AT nicholasthomasc visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT alexandroveugenyv visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT blatovvladislava visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT shevchenkoalexanderp visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT proserpiodavidem visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT goodwinandrewl visualizationandquantificationofgeometricdiversityinmetalorganicframeworks AT deringervolkerl visualizationandquantificationofgeometricdiversityinmetalorganicframeworks |