Cargando…

Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks

[Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised lear...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicholas, Thomas C., Alexandrov, Eugeny V., Blatov, Vladislav A., Shevchenko, Alexander P., Proserpio, Davide M., Goodwin, Andrew L., Deringer, Volker L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367000/
https://www.ncbi.nlm.nih.gov/pubmed/35966284
http://dx.doi.org/10.1021/acs.chemmater.1c02439
_version_ 1784765692248064000
author Nicholas, Thomas C.
Alexandrov, Eugeny V.
Blatov, Vladislav A.
Shevchenko, Alexander P.
Proserpio, Davide M.
Goodwin, Andrew L.
Deringer, Volker L.
author_facet Nicholas, Thomas C.
Alexandrov, Eugeny V.
Blatov, Vladislav A.
Shevchenko, Alexander P.
Proserpio, Davide M.
Goodwin, Andrew L.
Deringer, Volker L.
author_sort Nicholas, Thomas C.
collection PubMed
description [Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised learning”) schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies.
format Online
Article
Text
id pubmed-9367000
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93670002022-08-12 Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks Nicholas, Thomas C. Alexandrov, Eugeny V. Blatov, Vladislav A. Shevchenko, Alexander P. Proserpio, Davide M. Goodwin, Andrew L. Deringer, Volker L. Chem Mater [Image: see text] With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised learning”) schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies. American Chemical Society 2021-10-27 2021-11-09 /pmc/articles/PMC9367000/ /pubmed/35966284 http://dx.doi.org/10.1021/acs.chemmater.1c02439 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Nicholas, Thomas C.
Alexandrov, Eugeny V.
Blatov, Vladislav A.
Shevchenko, Alexander P.
Proserpio, Davide M.
Goodwin, Andrew L.
Deringer, Volker L.
Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title_full Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title_fullStr Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title_full_unstemmed Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title_short Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks
title_sort visualization and quantification of geometric diversity in metal–organic frameworks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367000/
https://www.ncbi.nlm.nih.gov/pubmed/35966284
http://dx.doi.org/10.1021/acs.chemmater.1c02439
work_keys_str_mv AT nicholasthomasc visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT alexandroveugenyv visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT blatovvladislava visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT shevchenkoalexanderp visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT proserpiodavidem visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT goodwinandrewl visualizationandquantificationofgeometricdiversityinmetalorganicframeworks
AT deringervolkerl visualizationandquantificationofgeometricdiversityinmetalorganicframeworks