Cargando…
Radiomics-Based Deep Learning Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography
SIMPLE SUMMARY: The five-year survival rate of non-small-cell lung cancer (NSCLC), which accounts for 85% of all lung cancer cases, is only 10–20%. A reliable prediction model of overall survival (OS) that integrates imaging and clinical data is required. Overall, 492 patients with NSCLC from two ho...
Autores principales: | Hou, Kuei-Yuan, Chen, Jyun-Ru, Wang, Yung-Chen, Chiu, Ming-Huang, Lin, Sen-Ping, Mo, Yuan-Heng, Peng, Shih-Chieh, Lu, Chia-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367244/ https://www.ncbi.nlm.nih.gov/pubmed/35954461 http://dx.doi.org/10.3390/cancers14153798 |
Ejemplares similares
-
Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma
por: Deng, Peng-Zhan, et al.
Publicado: (2022) -
A radiomics-based deep learning approach to predict progression free-survival after tyrosine kinase inhibitor therapy in non-small cell lung cancer
por: Lu, Chia-Feng, et al.
Publicado: (2023) -
Radiomic features analysis in computed tomography images of lung nodule classification
por: Chen, Chia-Hung, et al.
Publicado: (2018) -
Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer
por: Laqua, Fabian Christopher, et al.
Publicado: (2023) -
Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2022)