Cargando…
HSP70 Gene Family in Brassica rapa: Genome-Wide Identification, Characterization, and Expression Patterns in Response to Heat and Cold Stress
Heat shock proteins protect plants from abiotic stress, such as salt, drought, heat, and cold stress. HSP70 is one of the major members of the heat shock protein family. To explore the mechanism of HSP70 in Brassica rapa, we identified 28 putative HSP70 gene family members using state-of-the-art bio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367284/ https://www.ncbi.nlm.nih.gov/pubmed/35954158 http://dx.doi.org/10.3390/cells11152316 |
Sumario: | Heat shock proteins protect plants from abiotic stress, such as salt, drought, heat, and cold stress. HSP70 is one of the major members of the heat shock protein family. To explore the mechanism of HSP70 in Brassica rapa, we identified 28 putative HSP70 gene family members using state-of-the-art bioinformatics-based tools and methods. Based on chromosomal mapping, HSP70 genes were the most differentially distributed on chromosome A03 and the least distributed on chromosome A05. Ka/Ks analysis revealed that B. rapa evolution was subjected to intense purifying selection of the HSP70 gene family. RNA-sequencing data and expression profiling showed that heat and cold stress induced HSP70 genes. The qRT-PCR results verified that the HSP70 genes in Chinese cabbage (Brassica rapa ssp. pekinensis) are stress-inducible under both cold and heat stress. The upregulated expression pattern of these genes indicated the potential of HSP70 to mitigate environmental stress. These findings further explain the molecular mechanism underlying the responses of HSP70 to heat and cold stress. |
---|