Cargando…
Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
SIMPLE SUMMARY: Tumor segmentation is a key step in oncologic imaging processing and is a time-consuming process usually performed manually by radiologists. To facilitate it, there is growing interest in applying deep-learning segmentation algorithms. Thus, we explore the variability between two obs...
Autores principales: | Veiga-Canuto, Diana, Cerdà-Alberich, Leonor, Sangüesa Nebot, Cinta, Martínez de las Heras, Blanca, Pötschger, Ulrike, Gabelloni, Michela, Carot Sierra, José Miguel, Taschner-Mandl, Sabine, Düster, Vanessa, Cañete, Adela, Ladenstein, Ruth, Neri, Emanuele, Martí-Bonmatí, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367307/ https://www.ncbi.nlm.nih.gov/pubmed/35954314 http://dx.doi.org/10.3390/cancers14153648 |
Ejemplares similares
-
A Confidence Habitats Methodology in MR Quantitative Diffusion for the Classification of Neuroblastic Tumors
por: Cerdá Alberich, Leonor, et al.
Publicado: (2020) -
Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
por: Veiga-Canuto, Diana, et al.
Publicado: (2023) -
A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data
por: Baeza-Delgado, Carlos, et al.
Publicado: (2022) -
DICOM-MIABIS integration model for biobanks: a use case of the EU PRIMAGE project
por: Scapicchio, Camilla, et al.
Publicado: (2021) -
High Oct4 expression: implications in the pathogenesis of neuroblastic tumours
por: Monferrer, Ezequiel, et al.
Publicado: (2019)