Cargando…

Evaluation of a Numerical, Real-Time Ultrasound Imaging Model for the Prediction of Litter Size in Pregnant Sows, with Machine Learning

SIMPLE SUMMARY: The use of a numeric model to quantify real-time ultrasonographic (RTU) imaging is a prominent methodfor predicting the expected litter size by training an artificial neural network (ANN) to minimize the error of the prediction measured by metrics, such as root square mean error and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kousenidis, Konstantinos, Kirtsanis, Georgios, Karageorgiou, Efstathia, Tsiokos, Dimitrios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367485/
https://www.ncbi.nlm.nih.gov/pubmed/35953938
http://dx.doi.org/10.3390/ani12151948
Descripción
Sumario:SIMPLE SUMMARY: The use of a numeric model to quantify real-time ultrasonographic (RTU) imaging is a prominent methodfor predicting the expected litter size by training an artificial neural network (ANN) to minimize the error of the prediction measured by metrics, such as root square mean error and mean absolute error. Time of the RTU application is a critical factor for such a prediction. Rated scale values (RSV) obtained from the RTU images relate to the accurate diagnosis of pregnancy and of litter size, suggesting the potential of a generalized use of the model in various farm conditions. Ultimately, the employment of the model in machine learning for an automated prediction of litter size can be used as a routine on-farm procedure for the efficient management of gestating sows. ABSTRACT: The present study aimed to evaluate the accuracy of a numerical model, quantifying real-time ultrasonographic (RTU) images of pregnant sows, to predict litter size. The time of the test with the least error was also considered. A number of 4165 pregnancies in Farm 1 and 438 in Farm 2 were diagnosed twice, with the quality of the RTU images translated into rated-scale values (RSV1 and RSV2). When a deep neural network (DNN) was trained, the evaluation of the method showed that the prediction of litter size can be performed with little error. Root square mean error (RMSE) for training, validation with data from Farm 1, and testing on the data from Farm 2 were 0.91, 0.97, and 1.05, respectively. Corresponding mean absolute errors (MAE) were 2.27, 2.41, and 2.58. Time appeared to be a critical factor for the accuracy of the model. The smallest MAE was achieved when the RTU was performed at days 20–22. It is concluded that a numerical, RTU imaging model is a prominent predictor of litter size, when a DNN is used. Therefore, early routinely evaluated RTU images of pregnant sows can predict litter size, with machine learning, in an automated manner and provide a useful tool for the efficient management of pregnant sows.