Cargando…

RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes

Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoyu, Liang, Chengcheng, Li, Anning, Cheng, Gong, Long, Feng, Khan, Rajwali, Wang, Jianfang, Zhang, Yu, Wu, Sen, Wang, Yujuan, Qiu, Ju, Mei, Chugang, Yang, Wucai, Zan, Linsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367662/
https://www.ncbi.nlm.nih.gov/pubmed/35941812
http://dx.doi.org/10.1080/21623945.2022.2106051
Descripción
Sumario:Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and intramuscular adipocyte transcriptomes using the combined analysis of transcriptomes and lipid metabolism to explore differences in adipogenic characteristics. We identified perirenal preadipocytes (PRA) and intramuscular preadipocytes (IMA) in Qinchuan cattle. We found that IMA were highly prolific in the early stages of adipogenesis, while PRA shows a stronger adipogenic ability in the terminal differentiation. Bovine perirenal and intramuscular adipocytes were detected through the combined analysis of the transcriptome and metabolome. More triglyceride was found to be upregulated in perirenal adipocytes; however, more types and amounts of unsaturated fatty acids were detected in intramuscular adipocytes, including eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3; DHA). Furthermore, differentially expressed genes in perirenal and intramuscular adipocytes were positively correlated with the eicosanoid, phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), and sphingomyelin contents. Associated differential metabolic pathways included the glycerolipid and glycerophospholipid metabolisms. Our research findings provide a basis for the screening of key metabolic pathways or genes and metabolites involved in intramuscular fat production in cattle.