Cargando…
Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity
Ecological theories suggest that environmental, social, and individual factors interact to cause obesity. Yet, many analytic techniques, such as multilevel modeling, require manual specification of interacting factors, making them inept in their ability to search for interactions. This paper shows e...
Autores principales: | Allen, Ben, Lane, Morgan, Steeves, Elizabeth Anderson, Raynor, Hollie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367834/ https://www.ncbi.nlm.nih.gov/pubmed/35954804 http://dx.doi.org/10.3390/ijerph19159447 |
Ejemplares similares
-
Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence
por: Allen, Ben
Publicado: (2023) -
An interpretable machine learning model of cross-sectional U.S. county-level obesity prevalence using explainable artificial intelligence
por: Allen, Ben
Publicado: (2023) -
Discovering Graphical Heuristics on Fire-Induced Spalling of Concrete Through Explainable Artificial Intelligence
por: Tapeh, Arash Teymori Gharah, et al.
Publicado: (2022) -
Discovering functional connectivity features characterizing multiple sclerosis phenotypes using explainable artificial intelligence
por: Yamin, Muhammad Abubakar, et al.
Publicado: (2023) -
International dictionary of artificial intelligence
por: Raynor, William
Publicado: (1998)