Cargando…
Predicting COVID-19 Infections in Eswatini Using the Maximum Likelihood Estimation Method
COVID-19 country spikes have been reported at varying temporal scales as a result of differences in the disease-driving factors. Factors affecting case load and mortality rates have varied between countries and regions. We investigated the association between socio-economic, weather, demographic and...
Autores principales: | Dlamini, Sabelo Nick, Dlamini, Wisdom Mdumiseni, Fall, Ibrahima Socé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367839/ https://www.ncbi.nlm.nih.gov/pubmed/35954524 http://dx.doi.org/10.3390/ijerph19159171 |
Ejemplares similares
-
Bayesian Geostatistical Modeling to Assess Malaria Seasonality and Monthly Incidence Risk in Eswatini
por: Dlamini, Sabelo Nick, et al.
Publicado: (2022) -
Spatial risk assessment of an emerging pandemic under data scarcity: A case of COVID-19 in Eswatini
por: Dlamini, Wisdom M., et al.
Publicado: (2020) -
Bayesian network-based spatial predictive modelling reveals COVID-19 transmission dynamics in Eswatini
por: Dlamini, Wisdom M. D., et al.
Publicado: (2021) -
Factors associated with prognostic or treatment outcomes in HIV/AIDS patients with and without hypertension in Eswatini
por: Dlamini, Sabelo Bonginkosi, et al.
Publicado: (2021) -
Perceptions about tuberculosis and perceived tuberculosis-related stigma and associated factors among the mining community in Eswatini
por: Maibvise, Charles, et al.
Publicado: (2022)