Cargando…
Downregulation of miR-192 Alleviates Oxidative Stress-Induced Porcine Granulosa Cell Injury by Directly Targeting Acvr2a
Follicular atresia is primarily caused by breakdown to granulosa cells (GCs) due to oxidative stress (OS). MicroRNAs (miRNAs) elicit a defense response against environmental stresses, such as OS, by acting as gene-expression regulators. However, the association between miRNA expression and OS in por...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368079/ https://www.ncbi.nlm.nih.gov/pubmed/35954205 http://dx.doi.org/10.3390/cells11152362 |
Sumario: | Follicular atresia is primarily caused by breakdown to granulosa cells (GCs) due to oxidative stress (OS). MicroRNAs (miRNAs) elicit a defense response against environmental stresses, such as OS, by acting as gene-expression regulators. However, the association between miRNA expression and OS in porcine GCs (PGCs) is unclear. Here, we examined the impact of H(2)O(2)-mediated OS in PGCs through miRNA-Seq. We identified 22 (14 upregulated and 8 downregulated) and 33 (19 upregulated and 14 downregulated) differentially expressed miRNAs (DEmiRNAs) at 100 μM and 300 μM H(2)O(2), respectively, compared with the control group. Among the DEmiRNAs, mi-192 was most induced by H(2)O(2)-mediated OS, and the downregulation of miR-192 alleviated PGC oxidative injury. The dual-luciferase reporter assay results revealed that miR-192 directly targeted Acvr2a. The Acvr2a level was found to be remarkably decreased after OS. Furthermore, grape seed procyanidin B2 (GSPB2) treatment significantly reduced the H(2)O(2)-induced upregulation of miR-192, and decreased PGC apoptosis and oxidative damage. Meanwhile, GSPB2 prevented an H(2)O(2)-induced increase in caspase-3 activity, which was enhanced by the application of the miR-192 inhibitor. These results indicate that GSPB2 protects against PGC oxidative injury via the downregulation of miR-192, the upregulation of Acvr2a expression, and the suppression of the caspase-3 apoptotic signaling pathway. |
---|