Cargando…

ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data

Optical quantitative phase imaging (QPI) is a frequently used technique to recover biological cells with high contrast in biology and life science for cell detection and analysis. However, the quantitative phase information is difficult to directly obtain with traditional optical microscopy. In addi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Hao, Li, Fajing, Chen, Xiang, Ma, Jun, Nie, Shouping, Ye, Ran, Yuan, Caojin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368182/
https://www.ncbi.nlm.nih.gov/pubmed/35954239
http://dx.doi.org/10.3390/cells11152394
_version_ 1784766042418970624
author Ding, Hao
Li, Fajing
Chen, Xiang
Ma, Jun
Nie, Shouping
Ye, Ran
Yuan, Caojin
author_facet Ding, Hao
Li, Fajing
Chen, Xiang
Ma, Jun
Nie, Shouping
Ye, Ran
Yuan, Caojin
author_sort Ding, Hao
collection PubMed
description Optical quantitative phase imaging (QPI) is a frequently used technique to recover biological cells with high contrast in biology and life science for cell detection and analysis. However, the quantitative phase information is difficult to directly obtain with traditional optical microscopy. In addition, there are trade-offs between the parameters of traditional optical microscopes. Generally, a higher resolution results in a smaller field of view (FOV) and narrower depth of field (DOF). To overcome these drawbacks, we report a novel semi-supervised deep learning-based hybrid network framework, termed ContransGAN, which can be used in traditional optical microscopes with different magnifications to obtain high-quality quantitative phase images. This network framework uses a combination of convolutional operation and multiheaded self-attention mechanism to improve feature extraction, and only needs a few unpaired microscopic images to train. The ContransGAN retains the ability of the convolutional neural network (CNN) to extract local features and borrows the ability of the Swin-Transformer network to extract global features. The trained network can output the quantitative phase images, which are similar to those restored by the transport of intensity equation (TIE) under high-power microscopes, according to the amplitude images obtained by low-power microscopes. Biological and abiotic specimens were tested. The experiments show that the proposed deep learning algorithm is suitable for microscopic images with different resolutions and FOVs. Accurate and quick reconstruction of the corresponding high-resolution (HR) phase images from low-resolution (LR) bright-field microscopic intensity images was realized, which were obtained under traditional optical microscopes with different magnifications.
format Online
Article
Text
id pubmed-9368182
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93681822022-08-12 ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data Ding, Hao Li, Fajing Chen, Xiang Ma, Jun Nie, Shouping Ye, Ran Yuan, Caojin Cells Article Optical quantitative phase imaging (QPI) is a frequently used technique to recover biological cells with high contrast in biology and life science for cell detection and analysis. However, the quantitative phase information is difficult to directly obtain with traditional optical microscopy. In addition, there are trade-offs between the parameters of traditional optical microscopes. Generally, a higher resolution results in a smaller field of view (FOV) and narrower depth of field (DOF). To overcome these drawbacks, we report a novel semi-supervised deep learning-based hybrid network framework, termed ContransGAN, which can be used in traditional optical microscopes with different magnifications to obtain high-quality quantitative phase images. This network framework uses a combination of convolutional operation and multiheaded self-attention mechanism to improve feature extraction, and only needs a few unpaired microscopic images to train. The ContransGAN retains the ability of the convolutional neural network (CNN) to extract local features and borrows the ability of the Swin-Transformer network to extract global features. The trained network can output the quantitative phase images, which are similar to those restored by the transport of intensity equation (TIE) under high-power microscopes, according to the amplitude images obtained by low-power microscopes. Biological and abiotic specimens were tested. The experiments show that the proposed deep learning algorithm is suitable for microscopic images with different resolutions and FOVs. Accurate and quick reconstruction of the corresponding high-resolution (HR) phase images from low-resolution (LR) bright-field microscopic intensity images was realized, which were obtained under traditional optical microscopes with different magnifications. MDPI 2022-08-03 /pmc/articles/PMC9368182/ /pubmed/35954239 http://dx.doi.org/10.3390/cells11152394 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ding, Hao
Li, Fajing
Chen, Xiang
Ma, Jun
Nie, Shouping
Ye, Ran
Yuan, Caojin
ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title_full ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title_fullStr ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title_full_unstemmed ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title_short ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data
title_sort contransgan: convolutional neural network coupling global swin-transformer network for high-resolution quantitative phase imaging with unpaired data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368182/
https://www.ncbi.nlm.nih.gov/pubmed/35954239
http://dx.doi.org/10.3390/cells11152394
work_keys_str_mv AT dinghao contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT lifajing contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT chenxiang contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT majun contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT nieshouping contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT yeran contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata
AT yuancaojin contransganconvolutionalneuralnetworkcouplingglobalswintransformernetworkforhighresolutionquantitativephaseimagingwithunpaireddata