Cargando…
Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation
Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368187/ https://www.ncbi.nlm.nih.gov/pubmed/35955426 http://dx.doi.org/10.3390/ijms23158291 |
_version_ | 1784766043963523072 |
---|---|
author | Qin, Xinghua Zhang, Yudi Zheng, Qiangsun |
author_facet | Qin, Xinghua Zhang, Yudi Zheng, Qiangsun |
author_sort | Qin, Xinghua |
collection | PubMed |
description | Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis. |
format | Online Article Text |
id | pubmed-9368187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93681872022-08-12 Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation Qin, Xinghua Zhang, Yudi Zheng, Qiangsun Int J Mol Sci Review Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis. MDPI 2022-07-27 /pmc/articles/PMC9368187/ /pubmed/35955426 http://dx.doi.org/10.3390/ijms23158291 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Qin, Xinghua Zhang, Yudi Zheng, Qiangsun Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title | Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title_full | Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title_fullStr | Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title_full_unstemmed | Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title_short | Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation |
title_sort | metabolic inflexibility as a pathogenic basis for atrial fibrillation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368187/ https://www.ncbi.nlm.nih.gov/pubmed/35955426 http://dx.doi.org/10.3390/ijms23158291 |
work_keys_str_mv | AT qinxinghua metabolicinflexibilityasapathogenicbasisforatrialfibrillation AT zhangyudi metabolicinflexibilityasapathogenicbasisforatrialfibrillation AT zhengqiangsun metabolicinflexibilityasapathogenicbasisforatrialfibrillation |