Cargando…
An Integrated Machine Learning Scheme for Predicting Mammographic Anomalies in High-Risk Individuals Using Questionnaire-Based Predictors
This study aimed to investigate the important predictors related to predicting positive mammographic findings based on questionnaire-based demographic and obstetric/gynecological parameters using the proposed integrated machine learning (ML) scheme. The scheme combines the benefits of two well-known...
Autores principales: | Sun, Cheuk-Kay, Tang, Yun-Xuan, Liu, Tzu-Chi, Lu, Chi-Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368335/ https://www.ncbi.nlm.nih.gov/pubmed/35955112 http://dx.doi.org/10.3390/ijerph19159756 |
Ejemplares similares
-
Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification
por: Sun, Jeffrey, et al.
Publicado: (2023) -
Predictors of mammographic microcalcifications
por: Azam, Shadi, et al.
Publicado: (2020) -
An integrated machine learning predictive scheme for longitudinal laboratory data to evaluate the factors determining renal function changes in patients with different chronic kidney disease stages
por: Tsai, Ming-Hsien, et al.
Publicado: (2023) -
Interpretation of mammographic breast microcalcification: interobserver variability between radiologists and mammographers and analysis of best mammographic predictors of histopathological outcomes
por: Naidu, LS, et al.
Publicado: (2006) -
A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
por: Diro, Abebe, et al.
Publicado: (2021)