Cargando…
Bioimaging of Dissolvable Microneedle Arrays: Challenges and Opportunities
The emergence of microneedle arrays (MNAs) as a novel, simple, and minimally invasive administration approach largely addresses the challenges of traditional drug delivery. In particular, the dissolvable MNAs act as a promising, multifarious, and well-controlled platform for micro-nanotransport in m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368514/ https://www.ncbi.nlm.nih.gov/pubmed/36034102 http://dx.doi.org/10.34133/2022/9758491 |
Sumario: | The emergence of microneedle arrays (MNAs) as a novel, simple, and minimally invasive administration approach largely addresses the challenges of traditional drug delivery. In particular, the dissolvable MNAs act as a promising, multifarious, and well-controlled platform for micro-nanotransport in medical research and cosmetic formulation applications. The effective delivery mostly depends on the behavior of the MNAs penetrated into the body, and accurate assessment is urgently needed. Advanced imaging technologies offer high sensitivity and resolution visualization of cross-scale, multidimensional, and multiparameter information, which can be used as an important aid for the evaluation and development of new MNAs. The combination of MNA technology and imaging can generate considerable new knowledge in a cost-effective manner with regards to the pharmacokinetics and bioavailability of active substances for the treatment of various diseases. In addition, noninvasive imaging techniques allow rapid, receptive assessment of transdermal penetration and drug deposition in various tissues, which could greatly facilitate the translation of experimental MNAs into clinical application. Relying on the recent promising development of bioimaging, this review is aimed at summarizing the current status, challenges, and future perspective on in vivo assessment of MNA drug delivery by various imaging technologies. |
---|