Cargando…

Evolution Modes, Types, and Social-Ecological Drivers of Ecologically Critical Areas in the Sichuan–Yunnan Ecological Barrier in the Last 15 Years

The ecological barrier is a complex ecosystem that couples the human–nature relationship, and the ecologically critical area is an irreplaceable area with a special value in the ecosystem. Therefore, protecting the ecologically critical area is vital for maintaining and improving regional ecological...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Xinyu, Zhao, Xiaoqing, Pu, Junwei, Huang, Pei, Gu, Zexian, Chen, Yanjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368550/
https://www.ncbi.nlm.nih.gov/pubmed/35954561
http://dx.doi.org/10.3390/ijerph19159206
Descripción
Sumario:The ecological barrier is a complex ecosystem that couples the human–nature relationship, and the ecologically critical area is an irreplaceable area with a special value in the ecosystem. Therefore, protecting the ecologically critical area is vital for maintaining and improving regional ecological security. Limited research has been conducted on the evolution of ecologically critical areas, and none of the studies have considered the spatiotemporal heterogeneity of the driving factors for different evolution modes and types. Therefore, this research adopts the ecologically critical index, landscape expansion index, and the random forest model to analyze the pattern, driving factors, and its spatial-temporal heterogeneity to the evolution modes and specific types of ecologically critical areas in the Sichuan–Yunnan ecological barrier area in the last 15 years. The results showed that: (1) the ecologically critical areas in the Sichuan–Yunnan ecological barrier have changed dramatically, with the area reduction being 61.06%. Additionally, the spatial distribution characteristics of the ecologically critical area from north to south include planar, point, and linear forms. (2) The evolution trend of the ecologically critical area is ‘degradation–expansion–degradation’. Spread is the predominant type of expansion mode, whereas atrophy is the predominant type of degradation mode, indicating that the evolution mainly occurs at the edge of the original ecologically critical areas. (3) In general, precipitation, area of forest, area of cropland, and GDP have contributed significantly to the evolution of ecologically critical areas. However, the same driving factor has different effects on the expansion and degradation of these areas. Expansion is driven by multiple factors at the same time but is mainly related to human activities and land use change, whereas for degradation, climate and policy are the main driving factors. The present research aimed to quantitatively identify the evolution modes and specific types of ecologically critical areas and explore the spatiotemporal heterogeneity of driving factors. The results can help decision-makers in formulating ecological protection policies according to local conditions and in maintaining and enhancing the regional ecological functions, thereby promoting the sustainable development of society-economy-ecology.