Cargando…
Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study
Background: During the coronavirus disease 2019 (COVID-19) pandemic, calculation of the number of emergency department (ED) beds required for patients with vs. without suspected COVID-19 represented a real public health problem. In France, Amiens Picardy University Hospital (APUH) developed an Artif...
Autores principales: | Arnaud, Emilien, Elbattah, Mahmoud, Ammirati, Christine, Dequen, Gilles, Ghazali, Daniel Aiham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368666/ https://www.ncbi.nlm.nih.gov/pubmed/35955022 http://dx.doi.org/10.3390/ijerph19159667 |
Ejemplares similares
-
Predictive models in emergency medicine and their missing data strategies: a systematic review
por: Arnaud, Emilien, et al.
Publicado: (2023) -
Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data
por: Elbattah, Mahmoud, et al.
Publicado: (2021) -
Pain Self-Management with Inhaled Methoxyflurane by Emergency Department Trauma Patients: A Prospective, Interventional, Single-Center Study
por: Ghazali, Daniel Aiham, et al.
Publicado: (2023) -
Profile and Motivation of Patients Consulting in Emergency Departments While not Requiring Such a Level of Care
por: Ghazali, Daniel Aiham, et al.
Publicado: (2019) -
Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning
por: Cilia, Federica, et al.
Publicado: (2021)