Cargando…
Different In Vitro-Generated MUTZ-3-Derived Dendritic Cell Types Secrete Dexosomes with Distinct Phenotypes and Antigen Presentation Potencies
Human dendritic cell (DC) dexosomes were evaluated for their function and preclinical validation for vaccines. Dexosomes are small DC-secreted vesicles that contain absorbing immune signals. Vaccine manufacturing requires a significant number of monocyte-derived DCs (Mo-DCs) from donor blood; thus,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368791/ https://www.ncbi.nlm.nih.gov/pubmed/35955496 http://dx.doi.org/10.3390/ijms23158362 |
Sumario: | Human dendritic cell (DC) dexosomes were evaluated for their function and preclinical validation for vaccines. Dexosomes are small DC-secreted vesicles that contain absorbing immune signals. Vaccine manufacturing requires a significant number of monocyte-derived DCs (Mo-DCs) from donor blood; thus, Mo-DC dexosomes are expected to serve as novel materials for cancer vaccination. In this study, we characterized a potential dexosome model using immature and mature MUTZ3-derived DCs (M-imIL-4-DC, M-imIFN-DC, M-mIL-4-DC, and M-mIFN-DC) and their dexosomes (M-imIL-4-Dex, M-imIFN-Dex, M-mIL4-Dex, and M-mIFN-Dex). Despite the lack of significant differences in viability, M-mIFN-DC showed a significantly higher level of yield and higher levels of maturation surface markers, such as CD86 and HLA-ABC, than M-mIL-4-DC. In addition, M-mIFN-Dex expressed a higher level of markers, such as HLA-ABC, than M-mIL-4-Dex. Furthermore, M-mIFN-Dex exhibited a higher level of antigen presentation potency, as evaluated using a MART-1 system, than either M-imIFN-Dex or M-mIL-4-Dex. We found that M-mIFN-Dex is one of the four types of MUTZ3-derived DCs that harbor potential immunogenicity, suggesting that DC dexosomes could be useful resources in cancer immunotherapy. |
---|