Cargando…
Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia
Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368893/ https://www.ncbi.nlm.nih.gov/pubmed/35955530 http://dx.doi.org/10.3390/ijms23158396 |
_version_ | 1784766284842401792 |
---|---|
author | Kanova, Marcela Kohout, Pavel |
author_facet | Kanova, Marcela Kohout, Pavel |
author_sort | Kanova, Marcela |
collection | PubMed |
description | Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular complication in critically ill patients. It is a consequence of critical illness and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes the development of multiple organ dysfunction. Muscle dysfunction is an important component of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The population of critically ill is aging; thus, we face another negative effect—sarcopenia—the age-related decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular damage, and a common mechanism—mitochondrial dysfunction. In this review, we compare the molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding possible shared molecular mechanisms, and whether critical illness accelerates the aging process. |
format | Online Article Text |
id | pubmed-9368893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93688932022-08-12 Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia Kanova, Marcela Kohout, Pavel Int J Mol Sci Review Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular complication in critically ill patients. It is a consequence of critical illness and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes the development of multiple organ dysfunction. Muscle dysfunction is an important component of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The population of critically ill is aging; thus, we face another negative effect—sarcopenia—the age-related decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular damage, and a common mechanism—mitochondrial dysfunction. In this review, we compare the molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding possible shared molecular mechanisms, and whether critical illness accelerates the aging process. MDPI 2022-07-29 /pmc/articles/PMC9368893/ /pubmed/35955530 http://dx.doi.org/10.3390/ijms23158396 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kanova, Marcela Kohout, Pavel Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title | Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title_full | Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title_fullStr | Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title_full_unstemmed | Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title_short | Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia |
title_sort | molecular mechanisms underlying intensive care unit-acquired weakness and sarcopenia |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368893/ https://www.ncbi.nlm.nih.gov/pubmed/35955530 http://dx.doi.org/10.3390/ijms23158396 |
work_keys_str_mv | AT kanovamarcela molecularmechanismsunderlyingintensivecareunitacquiredweaknessandsarcopenia AT kohoutpavel molecularmechanismsunderlyingintensivecareunitacquiredweaknessandsarcopenia |