Cargando…
Addressing Missing Data in GC × GC Metabolomics: Identifying Missingness Type and Evaluating the Impact of Imputation Methods on Experimental Replication
[Image: see text] Missing data is a significant issue in metabolomics that is often neglected when conducting data preprocessing, particularly when it comes to imputation. This can have serious implications for downstream statistical analyses and lead to misleading or uninterpretable inferences. In...
Autores principales: | Davis, Trenton J., Firzli, Tarek R., Higgins Keppler, Emily A., Richardson, Matthew, Bean, Heather D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369014/ https://www.ncbi.nlm.nih.gov/pubmed/35881554 http://dx.doi.org/10.1021/acs.analchem.1c04093 |
Ejemplares similares
-
Methylation data imputation performances under different representations and missingness patterns
por: Lena, Pietro Di, et al.
Publicado: (2020) -
Optimization of Imputation Strategies for High-Resolution Gas Chromatography–Mass Spectrometry (HR GC–MS) Metabolomics Data
por: Ampong, Isaac, et al.
Publicado: (2022) -
Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS
por: Nam, Seo Lin, et al.
Publicado: (2020) -
Metabolomics Benefits from Orbitrap GC–MS—Comparison of Low- and High-Resolution GC–MS
por: Stettin, Daniel, et al.
Publicado: (2020) -
Semi-automated non-target processing in GC × GC–MS metabolomics analysis: applicability for biomedical studies
por: Koek, Maud M., et al.
Publicado: (2010)