Cargando…
Recent Advances and Future Directions in Downstream Processing of Therapeutic Antibodies
Despite the advent of many new therapies, therapeutic monoclonal antibodies remain a prominent biologics product, with a market value of billions of dollars annually. A variety of downstream processing technological advances have led to a paradigm shift in how therapeutic antibodies are developed an...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369434/ https://www.ncbi.nlm.nih.gov/pubmed/35955796 http://dx.doi.org/10.3390/ijms23158663 |
Sumario: | Despite the advent of many new therapies, therapeutic monoclonal antibodies remain a prominent biologics product, with a market value of billions of dollars annually. A variety of downstream processing technological advances have led to a paradigm shift in how therapeutic antibodies are developed and manufactured. A key driver of change has been the increased adoption of single-use technologies for process development and manufacturing. An early-stage developability assessment of potential lead antibodies, using both in silico and high-throughput experimental approaches, is critical to de-risk development and identify molecules amenable to manufacturing. Both statistical and mechanistic modelling approaches are being increasingly applied to downstream process development, allowing for deeper process understanding of chromatographic unit operations. Given the greater adoption of perfusion processes for antibody production, continuous and semi-continuous downstream processes are being increasingly explored as alternatives to batch processes. As part of the Quality by Design (QbD) paradigm, ever more sophisticated process analytical technologies play a key role in understanding antibody product quality in real-time. We should expect that computational prediction and modelling approaches will continue to be advanced and exploited, given the increasing sophistication and robustness of predictive methods compared to the costs, time, and resources required for experimental studies. |
---|