Cargando…

Study on SO(4)(2−)/Cl(−) Erosion Resistance and Mechanism of Recycled Concrete Containing Municipal Solid Waste Incineration (MSWI) Powder

In this paper, the strength characteristics and erosion resistance of solid waste incineration (MSWI) powder were studied. Firstly, the optimum process for the preparation of regenerated powder from MSWI bottom slag by ball milling was determined as follows: rotational speed 350 r/min, time 45 min....

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Yun, Ma, Yuanshan, Peng, Ningbo, Qiu, Jianchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369516/
https://www.ncbi.nlm.nih.gov/pubmed/35955289
http://dx.doi.org/10.3390/ma15155352
Descripción
Sumario:In this paper, the strength characteristics and erosion resistance of solid waste incineration (MSWI) powder were studied. Firstly, the optimum process for the preparation of regenerated powder from MSWI bottom slag by ball milling was determined as follows: rotational speed 350 r/min, time 45 min. The strength activity index of regenerated powder reached the maximum when the substitute content of powder was 30%. Secondly, the semi-erosion method was used to study the strength variation rule of mortar with different content of MSWI powder in semi-immersion of salt solution. It was found that the higher the content of MSWI powder, the greater the anti-erosion coefficient of mortar specimen. Finally, the capillary rise test, crystallization test and capillary pore water absorption test were used to study the total porosity, coarse capillary-pore porosity and fine-capillary pore porosity of concrete containing MSWI powder. The results showed that, with the increase in MSWI powder content, the above pore structure properties were improved. The results revealed the transport and crystallization process of salt solution in concrete mixed with MSWI powder and the mechanism of corrosion resistance.