Cargando…
Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm
Compressive strength (CS) and splitting tensile strength (STS) are paramount parameters in the design of reinforced concrete structures and are required by pertinent standard provisions. Robust prediction models for these properties can save time and cost by reducing the number of laboratory trial b...
Autores principales: | Shah, Hammad Ahmed, Nehdi, Moncef L., Khan, Muhammad Imtiaz, Akmal, Usman, Alabduljabbar, Hisham, Mohamed, Abdullah, Sheraz, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369534/ https://www.ncbi.nlm.nih.gov/pubmed/35955371 http://dx.doi.org/10.3390/ma15155436 |
Ejemplares similares
-
Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin
por: Shah, Hammad Ahmed, et al.
Publicado: (2022) -
A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate
por: Zaid, Osama, et al.
Publicado: (2021) -
Optimization Based on Toughness and Splitting Tensile Strength of Steel-Fiber-Reinforced Concrete Incorporating Silica Fume Using Response Surface Method
por: Köksal, Fuat, et al.
Publicado: (2022) -
Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres
por: Khanzada, Farooq Azam, et al.
Publicado: (2022) -
Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks
por: Marani, Afshin, et al.
Publicado: (2020)