Cargando…
Application of Deep Learning Workflow for Autonomous Grain Size Analysis
Traditional grain size determination in materials characterization involves microscopy images and a laborious process requiring significant manual input and human expertise. In recent years, the development of computer vision (CV) has provided an alternative approach to microstructural characterizat...
Autores principales: | Bordas, Alexandre, Zhang, Jingchao, Nino, Juan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369622/ https://www.ncbi.nlm.nih.gov/pubmed/35956777 http://dx.doi.org/10.3390/molecules27154826 |
Ejemplares similares
-
Deep learning workflow in radiology: a primer
por: Montagnon, Emmanuel, et al.
Publicado: (2020) -
Computational workflow for the fine-grained analysis of metagenomic samples
por: Pérez-Wohlfeil, Esteban, et al.
Publicado: (2016) -
The Effect of Fine-Grained Control of Workflow on Informal Learning: The Mediating Effect of Teacher Burnout
por: Lu, Zenghui, et al.
Publicado: (2022) -
Designing machine learning workflows with an application to topological data analysis
por: Cawi, Eric, et al.
Publicado: (2019) -
Deep learning workflow for the inverse design of molecules with specific optoelectronic properties
por: Yoo, Pilsun, et al.
Publicado: (2023)