Cargando…

Experimental Study on Carbonation of Cement-Based Materials in Underground Engineering

The corrosive water environment has a decisive influence on the durability of a diversion tunnel lining. In this paper, the effects of carbonation on cement-based materials in water-immersion and saturated-humidity environments were studied by increasing the CO(2) concentration. The results show tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jun, Zeng, Gang, Zhou, Hui, Cai, Guanghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369855/
https://www.ncbi.nlm.nih.gov/pubmed/35955173
http://dx.doi.org/10.3390/ma15155238
Descripción
Sumario:The corrosive water environment has a decisive influence on the durability of a diversion tunnel lining. In this paper, the effects of carbonation on cement-based materials in water-immersion and saturated-humidity environments were studied by increasing the CO(2) concentration. The results show that under conditions of water-immersion and saturated humidity, the color of the non-carbonation region is dark, while the carbonation region is gray, and the color boundary is obvious. However, in an atmospheric environment, there is no zone with a dark color and the color boundary is not obvious. In a saturated-humidity environment, the carbonation depth increases over time and changes greatly, and its value is about 16.71 mm at 200 days. While in a water-immersion environment, the carbonation depth varies little with time and the value is only 2.31 mm. The carbonation depths of cement mortar samples in different environments generally follow a linear relationship with the square root of time. The carbonation coefficient in a saturated-humidity environment is more than nine times that in the water-immersion environment. In a water-immersion environment, the carbonation causes a large loss of calcium in cement-based materials, and their Ca/Si ratio obviously decreases. The calcium silicon ratio (Ca/Si) of cement-based materials in a water-immersion environment is 0.11, which is much less than 1.51 in a water-saturated environment and 1.49 in an atmospheric environment. In a saturated-humidity environment, the carbonation only reduces the pH of the pore solution in the carbonation region, and the structural stability of cement-based materials is not degraded. The number of pores of all radii after carbonation in a water-immersion environment exceeds that in a saturated-humidity environment, and the total pore volume and average pore radius in a water-immersion environment are also larger than in a saturated-humidity environment, so the water-immersion environment accelerates the development and expansion of pores. The research results can provide some theoretical and technical support for the design, construction, and safe operation of diversion tunnel linings.