Cargando…
Predicting the Rheological Properties of Super-Plasticized Concrete Using Modeling Techniques
Interface yield stress (YS) and plastic viscosity (PV) have a significant impact on the pumpability of concrete mixes. This study is based on the application of predictive machine learning (PML) techniques to forecast the rheological properties of fresh concrete. The artificial neural network (NN) a...
Autores principales: | Amin, Muhammad Nasir, Ahmad, Ayaz, Khan, Kaffayatullah, Ahmad, Waqas, Ehsan, Saqib, Alabdullah, Anas Abdulalim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369977/ https://www.ncbi.nlm.nih.gov/pubmed/35955143 http://dx.doi.org/10.3390/ma15155208 |
Ejemplares similares
-
Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Computational AI Models for Investigating the Radiation Shielding Potential of High-Density Concrete
por: Amin, Muhammad Nasir, et al.
Publicado: (2022)