Cargando…
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation
Background: Deep learning (DL) could predict isocitrate dehydrogenase (IDH) mutation status from MRIs. Yet, previous work focused on CNNs with refined tumor segmentation. To bridge the gap, this study aimed to evaluate the feasibility of developing a Transformer-based network to predict the IDH muta...
Autores principales: | Wu, Jiangfen, Xu, Qian, Shen, Yiqing, Chen, Weidao, Xu, Kai, Qi, Xian-Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369996/ https://www.ncbi.nlm.nih.gov/pubmed/35956236 http://dx.doi.org/10.3390/jcm11154625 |
Ejemplares similares
-
SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
por: Jiang, Yun, et al.
Publicado: (2022) -
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
High-Resolution Swin Transformer for Automatic Medical Image Segmentation
por: Wei, Chen, et al.
Publicado: (2023) -
SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer
por: Xu, Zhanpeng, et al.
Publicado: (2022) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022)